首页> 外文OA文献 >Online Nonlinear Estimation via Iterative L2-Space Projections: Reproducing Kernel of Subspace
【2h】

Online Nonlinear Estimation via Iterative L2-Space Projections: Reproducing Kernel of Subspace

机译:迭代L2空间投影的在线非线性估计:   再生子空间的核心

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a novel online learning paradigm for nonlinear-function estimationtasks based on the iterative projections in the L2 space with probabilitymeasure reflecting the stochastic property of input signals. The proposedlearning algorithm exploits the reproducing kernel of the so-called dictionarysubspace, based on the fact that any finite-dimensional space of functions hasa reproducing kernel characterized by the Gram matrix. The L2-space geometryprovides the best decorrelation property in principle. The proposed learningparadigm is significantly different from the conventional kernel-based learningparadigm in two senses: (i) the whole space is not a reproducing kernel Hilbertspace and (ii) the minimum mean squared error estimator gives the bestapproximation of the desired nonlinear function in the dictionary subspace. Itpreserves efficiency in computing the inner product as well as in updating theGram matrix when the dictionary grows. Monotone approximation, asymptoticoptimality, and convergence of the proposed algorithm are analyzed based on thevariable-metric version of adaptive projected subgradient method. Numericalexamples show the efficacy of the proposed algorithm for real data over avariety of methods including the extended Kalman filter and many batchmachine-learning methods such as the multilayer perceptron.
机译:我们提出了一种新的在线学习范例,用于非线性函数估计任务,该模型基于L2空间中的迭代投影,并具有反映输入信号随机特性的概率测度。提出的学习算法基于函数的任何有限维空间都具有以Gram矩阵为特征的再现内核这一事实,利用了所谓的字典子空间的再现内核。 L2空间几何体原则上提供最佳的去相关属性。所提出的学习范式在两个方面与传统的基于核的学习范式显着不同:(i)整个空间都不是可再生的内核希尔伯特空间;(ii)最小均方误差估计器在字典中提供了所需非线性函数的最佳近似。子空间。当字典增长时,它保留了计算内部乘积以及更新Gram矩阵的效率。基于自适应投影次梯度方法的变分形式,分析了算法的单调逼近,渐近最优性和收敛性。数值示例表明,所提出的算法在包括扩展卡尔曼滤波器和许多批处理机器学习方法(例如多层感知器)在内的各种方法上对真实数据的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号